STABLE DETERMINATION OF A TIME-DEPENDENT MATRIX POTENTIAL
FOR A WAVE EQUATION IN AN INFINITE WAVEGUIDE

NITESH KUMARf, TANMAY SARKAR! AND MANMOHAN VASHISTH*

ABSTRACT. We analyze the stability of an inverse problem for determining the time-dependent matrix
potential appearing in the Dirichlet initial-boundary value problem for the wave equation in an un-
bounded cylindrical waveguide. The observation is given by the input-output map associated with the
wave equation. Considering a suitable geometric optics solution and with the help of light ray transform,
we demonstrate the stability estimate in the determination of the time-dependent matrix potential from
the given input-output map.

1. INTRODUCTION

The present paper is concerned with an inverse problem of determining a matrix-valued potential
q(t,x) == ((¢:5(t,2)))1<i,j<n in an unbounded cylindrical domain = w x R, where w is a C*>* bounded
open connected domain of the Euclidean space R%. For time T > 0, we denote Q7 := (0,7) x Q and
the lateral boundary of Qp by X := (0,7) x 02 where 9 := 0w x R. We consider the following initial
boundary value problem (IBVP) for the system of wave equations:

57(7 )i ’ . (t,I)EQT,
7( ) o ( ) 7(O,x) = ¢ (), T €, (1.1)
=Tt (tz) €%,
where the operator £, is described by
L, () =0 (tx) + q(t,z) L (L, x)
Oui (¢, z) + Z?:l qi1j (t, x)“j (t,z)
Oua(t, z) + Z?:l 42; (t, x)“j (t,z) (1.2)
= : s (t7l‘) c QT

D, (t7 Z‘) + Z?:l nj (ta Z‘)Uj (t’ .13)
in which 00 := §? — A, denotes the standard wave operator and
q(t,2) = ((¢ij(t,2)))1<ij<n With g;; € WH(Qr), forall 1<i,j <n,

represents a time-dependent matrix potential and 7(t,x) = (ur(t, ), us(t,x),- - ,un(t,z))T represent
the displacement vector.
Following [26], we introduce the following spaces

H*(0Q) = H*(R,,; L?(0w)) N L*(Ry,; H*(0w)),
H™((0,T) x X) = H"(0,T; L*(X)) N L*(0, T; H* (X)),
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where X = Q or X =09, s > 0 and r > 0. Suppose 0, denotes the tangential derivative with respect to
Ow. Furthermore, we also set

L= {(¢,¢,f) e HY(Q) x L2(Q) x H33(2) : dlog = flico, Oufs Orf, Ouyf € L? (E;da(x)%)}
with [|(¢,%, f)|| defined by

16,5, OIZ =Sl ) + 11720y + IFI1

H3 3 (%)
2 2 2
o [ AR 0t
b

In addition, throughout this paper, we will use the notation, L := L X -+ X L (n-times) and H*(X)
represents the space of the vector-valued functions defined on X with each of its component in H*(X).
Similar notations will also be incorporated for the spaces C*(X), L2(X) as well. To ensure the well-

posedness of the IBVP (1.1)), we impose the initial data and boundary data (¢, ¢, f) € H(Q)xL?(Q) x
L and assume the following global compatibility conditions (see [36, pp. 100] for more details)
o] —- 2 dr
fR fR fO |8x2g|3;1:r — ax27|t=r| djdﬁbzdl‘g < 00,
o0 2 T
fR fR fO |8x3 o |3:1=7" - aacd |t=7“| dT.dx2dx3 < oo

whenever w := {(z1,72) € R?: 21 > 0} (for details, kindly refer to Section . As a consequence, using
the Theorem in Section [2] there exists a unique solution o of (1.1) satisfying the following:

w4 e CY0,TI;L2(Q) N C([0,T); H'(Q)) and 8,7 € L*(D),

(z) dt.

(1.3)

where v is the outward unit normal vector to Q and 9, := (0,u1,0,us, . ..,0,u,)T denotes the normal
derivative of vector .
Based on the existence and uniqueness of the solution to IBVP (1.1]), we define the input-output (I0)
map
Ay: L —  HYQ) x L*(Q) x LA(%)

associated to the system of wave equations (|1.1)) by

— =
Aq <¢5 w57) = (7|t:T’at7‘t:T78”7|E)7 (14)
where 7 is the solution of . Subsequently, we use the notations for its components as follows:
— = — - —
NG =Ty 220,90, F) =0 A3, 4, F)=0,70), (L.5)

In the present paper, we consider the inverse problem of determining a time-dependent matrix potential
q(t, z) from the knowledge of IO map A,. Our aim is to establish a stability estimate for the determination
of ¢ from the given A,. We remark that the equation describes the propagation of waves (for instance,
electromagnetic waves or sound waves) along the axis of an infinite waveguide under the influence of
zeroth-order potential ¢(¢,x). Moreover, equation also appears in the model of transmitting light,
signals, and sounds to long distances.

Determination of ceofficients of wave operator are of great interest in recent times. In [12] [39], the
authors proved that the time independent potential can be determined uniquely from the knowledge
of Dirichlet to Neumann (DN) map associated with a wave equation. The approach used in [39] was
initially used [48] for solving the Calderén problem. The results in [I2] [39] are further extended to
the recovery of time-dependent potential in [40, 41] and for recovery of first order derivative terms
together with a potential coefficients are considered in [16] 17 20, 2], [42]. All these works are related
to recovery of coefficients either from the knowledge of DN map or IO map measured on full boundary.
There have been several studies related to partial data uniqueness results as well. We refer to [30} 31,
32, 133, [37] and references therein related to the determination of coefficients for wave operator from
partial boundary measurements which are initially studied in [I3] for the inverse problem related to the
Schrodinger equation. All the above mentioned works are related to unique determination of coefficients
appearing in wave equation from boundary measurements. Next we will mention briefly the works related
to deriving the stability estimate for coefficient determination problems for wave equation. Stefanov and
Uhlmann [46] obtained the stability estimate from the DN-map considered on the lateral boundary. Under
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certain assumptions, Holder stability estimate and log-log type of stability estimate were derived in [22)
and [4] respectively. With the help of light ray transform, the log-log type stability estimate was also
obtained in [I] in case of time-dependent scalar potential from the knowledge of I0-map associated with
a wave equation. For more works related to determining the stability estimates for coefficients appearing
in a single wave equation from the boundary measurements, one can refer to 3} 5, [6l [7, [8 9] 29, 43, [45]
and references therein. In the case of an infinite cylindrical domain, the literature on stability estimates is
limited. For instance, Bellassoued et al. [11] and Kian et al. [28] studied an inverse problems for magnetic
Schrodinger equation and established the Holder stability estimates. In [I0], the authors investigated the
inverse problem of determining the time-independent scalar potential of the dynamic Schrodinger equation
in an infinite cylindrical domain from partial measurement of the solution on the boundary. For related
work in the case of an infinite cylindrical domain, one may refer to [27, [44] and references therein.

To the best of our knowledge, the study of recovery of time-dependent matrix potential in the literature
is very limited. However, in the case of time-independent matrix potential, the authors in [2] proved that it
can be recovered from the boundary measurements. Furthermore, Eskin and Ralston in [I5] considered the
problem of determining zeroth order and first order matrix-valued perturbations in evolution equations
and proved uniqueness from the full boundary measurements. Khanfer et al. [25] also demonstrated
uniqueness in the case of time-dependent matrix potential under certain assumptions on the potential
and when the spatial dimension is one. Considering a bounded domain, Mishra and Vashisth in [37]
demonstrated the uniqueness of the time-dependent matrix potential for a wave equation from the partial
boundary data. In this paper, we consider the stability estimate in the determination of time-dependent
matrix potential over an infinite waveguide from the knowledge of the input-output map. We remark
that the estimate is obtained without the assumption of the behaviour of the matrix potential outside a
compact set.

The paper is organized as follows. In Section [2) we prove the well-posedness of the forward problem
. In Section (3, we state the main results of the stability estimate. In Section 4] we develop geometric
optics (GO) solutions for our problem. In Section [5] we derive an integral identity for our problem. Using
the GO solutions and light ray transform along with the integral identity, we demonstrate the stability
estimate. Moreover, under certain assumptions in Section [5] we extend this result to the same inverse
problem with measurements on a bounded subset of the lateral boundary.

2. EXISTENCE AND UNIQUENESS

In this section, we establish the existence and uniqueness of the IBVP (|1.1). More precisely, we prove
the following theorem:

Theorem 2.1. Let q(t,z) := ((¢i;(t,®)))1<ij<n with ¢;j € WH(Qr) for all 1 < i,j < n, be a time-

— '
dependent matriz potential. Suppose the initial and boundary data (¢, ¥, ?) € L. Then, there exists a

unique solution
o € CH([0, T];L*(€)) N C([0, T]; H' (2))
of the IBVP (L.1) such that 9, € L2(X). Moreover, it satisfies the energy estimate
- —
10,7 |2 () + 1T llco.mam @) + 1T e o.r1220)) < CII(S, 4. Dle, (2.1)
where the constant C = C(, T, ||q||w1. 7)) > 0.

In the case of bounded domain 2, the Theorem has been proved in [37]. However, the same can not
be applicable to the unbounded infinite waveguide. Nevertheless, we prove the Theorem by following
the approach used in [26] where a well-posedness result is proved for a single wave equation. We require
the following lemma to prove Theorem

Lemma 2.2. For all (E), E), ?) € L, there exists
- -
B =B[0. 7. F] = (wiwa.....w,)" € H¥(Qr)
satisfying
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and N
@l < CIBL B 1)l (2.3)

The Lemma can be proved if we show that for every ¢ = 1,2,...,n and for each (¢;,¢;, fi) € L,
there exists w; € H>2(Q7) satisfying

wz(07x) = ¢i7 8,57,01'(0,33) = %‘, in Qa (2 4)
Oyw; =0, w;=f;, on 3, .
and
will 220y < Cll(Dis i, fi)llL- (2.5)

Our aim is to show Lemma[2:2]related to the lifting of Sobolev spaces using the arguments related to local
coordinates as used in [35, Chapter 1] (see pages 38 — 40) for proving the trace theorem for L2-Sobolev
spaces. In this regard, we first prove the result when the domain w and its boundary dw are given by
Ri = {(x1,x2) : 1 > 0} and R respectively. Subsequently,  and 99 will be replaced by Ri and R?
respectively. We assume T = oco. Finally, Q7 and ¥ can be replaced by ((0,00) x R%) and ((0, 00) x R?)
respectively. Our goal is to ensure the existence of w; satisfying and (2.5). For convenience, we
omit the subscript ¢ for the following analysis.
We consider the space Z; consisting of (ug,u1, go, g1) such that

up € H3(RY), w € H2(RY), goe H23((0,00) x R?), g1 € H>3((0,00) x R?)  (2.6)
with the global compatibility conditions

uolaa = goli=o,
S S J57 sl =r = Duagolimr|* 2 dvadars < oo, (2.7)
S S S5 10yt =r = By gole=r | & diradizs < 0.

Now let us consider the Hilbert space

Z2 = {(qb,d), f) : ¢|3Q = f|t:0a tiéatfa t7%8¢c2¢|m1:t7

1

t~2 (V(m,m)f — V(wQ,w3)¢‘11:t> € L?((0,00) x RQ)}
and the associated norm is defined by

_1
(6,0, DIz, ::H(b"i{%(Ri) + H1P||Z%(R3+) + Hf”ilg’%((O,oo)sz) 1720 f 1122 ((0,00) xR2)

_1
+ 1t (v(f'327f63)f - v(12,f63)¢|$1:t) ||%2((0,oo)><]R2)'
With the above set-up, we shall prove Lemma [2.2
Proof of Lemma 222 Let us define an operator S : H*2((0,00) x R3) — Z; as
S(w) = (w‘t:()) atw|t:07 w|a:1:07 81‘1w|31:0)'

Then the linear operator S is continuous and onto (refer to Theorem 2.3 on page 18 in [36] Chapter 4]).
Afterwards, we show that for any (¢,v, f) € Z, there exists w € H*?((0,00) x R%) such that

(w|t:07 atw|t:07 w|a:1:07 8w1w|a:1:0> = (¢a wa f7 0) (28)
and the following estimate holds
lwl r2.2((0,00) xR ) < Cll(o, 0, HIIZ,- (2.9)

Let (ug,u1, go,91) = (&,%, f,0). Then it is observed that (ug,u1,go,g1) € Z1 if and only if (¢, 1, f) € Zs.
Furthermore, we consider the space

Zs = {w € H**((0,00) x R%) : 0y, w|y, =0 = 0}.

We observe that the restriction of the operator S to Zs is continuous and onto from Z3 to Zz x {0}. As
a consequence, we deduce the operator

S1:w— (w|t:o,8tw|t:07w‘f61:0)
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is continuous and onto from the space Z3 to the Hilbert space Z5. Hence there exists a bounded operator
Sy + Zy — Zg such that 152 = I. For w = Sa(¢, 9, f), (2.8) holds and the estimate (2.9)) is satisfied.
This completes the proof when the domain w and its boundary dw are given by R2 = {(z1,22) : 1 > 0}
and R respectively. Now since w C R? be an open set with smooth boundary therefore there exist
{U;}1<j<n a family of open subsets of R2 such that dw C Ui<j<nU; and smooth maps {n;}1<;<n such
that for each 1 < j < N, the map n; : U; = Q = {(y1,¥2) : |n1] < 1, & |y2| < 1} are bijective and
satisfies the following properties
0 (Ui Nw) ={(y1,92) € Q: y1 >0} := Qj, n;(U; N0w) ={(y1,42) € ©: y1 =0}

Since the composition of a Sobolev function with a smooth diffeomorphism is again a Sobolev function
in the respective domain, therefore we have the composition function f o nj_l lies in a Sobolev space
whenever f is a Sobolev function. Finally after choosing an open set Uy C R? such that w C UéV:OUj
and a partition of unity subordinate to the cover {U;}o<;<n, we can replace the space L along with the
global compatibility conditions given in (1.3]) by Zs (see [36, Proposition 3.3] for details). Subsequently,
we obtain that w; € H>?(Qr) such that (2.4) and (2.5 are satisfied. Hence the result follows. O
Proo o_f> Theorem [2.1] Thanks to Lemma we split ¥ into two parts @ = U + @ with W =
W[, ), ?] € H22(Qyp) satisfying ([2.2)-(2-3) and ¥ satisfies the following IBVP:

82T (t,7) — AT (t,7) + q(t,2) T (t,2) = F(t,z), () € O,

— —

P0,2) =0, 8, 7(0,z)= 0, z e, (2.10)

T(ta) =0, (t,z) €
with F(t,z) = — (828 (t,2) — AW(t,2) + q(t,2)W(t,x)). Since ¢ € WH=(Qr) and @ € H>?(Qr), we
have F'(t,x) € L%(Q7). To demonstrate the well-posedness of IBVP (2.10), we follow the arguments
from [35] [36], B7]. Let us define a time-dependent bilinear form

a(t; ¥, W) ::/Qvﬁ(x)-vﬁ(x) d:c+/9q(t,a:)7(x)-i?@dx, 7,0 € H(Q). (2.11)

Since ¢ € WH°°(Qr) and VW are time-independent, we have the following bound
la(t; T, 6)| < T g o) 1@ s o) (2.12)

where we have used the Cauchy-Schwartz inequality and the positive constant « is independent of o and
. Furthermore, we observe that

(%, )] = | /Q (VB@P +at.2)B(x) T(@)) de]

> |V 320 — llall @) 18320
and consequently, we obtain the following estimate
Bl I 0y < lalt; @, 6)| + T2 (), @ € Hy(Q), t € (0,T), (2.13)

for some constants 8 > 0 and v = 1 + ||q||p~(q,). From (2.11)-(2.13)), we conclude that the map

t — alt; o, W) is a continuous bilinear for all ¥, W € H}(Q) and ¢t € (0,T). Since the principal part

of a(t;-,-) is anti-symmetric, applying [35, Theorem 8.1] we ensure that there exists a unique solution
o e C(0,T; H'(Q)) N CH0,T; L2(Q)) of (2.10). In addition, there holds
- —

1% oo @) + 17 oo rizay < IS, 6, Pl (2.14)

From the Lemma there exists W € H>2(Qyp) such that (2.2) holds. Moreover, using the inclusion
(35, Chapter 1, Theorem 3.1])

H*2(Qr) < C(0, T H2 () N C1(0, T; HE(Q)) < C(0,7; H'(Q)) N C'(0, T; L3(Q)),
we have the following estimate
- — ?
17| co,rm @) + W lcr om0y < CllW a2 < ClI(¢, 4, f)llL- (2.15)

Combining the estimates (2.14)) and (2.15)) together, we have
7 e C(0, T;H' () N CH0,T; L2(Q))
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along with the estimate

— —
1% oy + 1@ llororazwy < CIS, 0, Pl (2.16)
Afterwards, we show that 8,7 € L2(X) and
- =

10, 7 Iy < CUCE, T, Pl (2.17)

To do this, for each i € {1,2,...,n}, let us define ?(i) = (0;r)"_;. As a consequence, we have

(8,52’01' — Avi + Z?:l qijvj) (t l‘ F ?(Z) t l‘ € QT,

vi(0,2) =0, 9yv;(0,2) =0, x € Q, (2.18)

vi(t, ) =0, (t,z) € X,

for any Lg i < n. Let v; be the unit outward normal vector to dw and let us consider the function
v € C°°(2,R?), which is defined by

y(@' z3) = (11(2"),0), 2 €w, x3 €R,

where v; € C>(w, R?) satisfies 71 = v; on dw. Hence we obtain v = v on 9§2. We multiply the equation
(2.18) by ~ - Vu; and integrate over Q1 to obtain

S+ & :/ (vai —Avi) (’y-Vvi) dx dt
Qr
—/ ('V-Vvi)Zqijvjdxdt—i—/ (?~?(i))(7~Vvi)dxdt
Qr j=1 Qr
o( |7|2dxdt+/ |Vvi|2dxdt—|—/ |(?-I_(>(i))|2dxdt>
QT QT

< (I o) + / (17 By oy + el ) )

< (I8, %, IR+ 17 W o.mman ) (2.19)
Using the integration by parts, we get

& = / 8?1)1- (’y . Vvi) dx dt
Qr
S / Osv; (y . V@tvi) dx dt + / 0v; (T, ) ('y -V (T, x)) dx
Qr Q
- / i (0, ) (7 - Vi (0, 2)) da dt
Q

1 2
= /Qatvi(T, x) (v -V (T, x)) dx — 3 /QT (7 -V (0:v;) ) dx dt.

With the help of Green’s formula in 2/ € w and the identity v(z) - V(9v;)? = 71 (2') - Vo (90)?, we

obtain
/ /7 V(0yv;)* dx dt = / //’yl o (0v)? da’ d3 dt
/ // (V-9)( &wl dz’ da:g,dt—i—/ / atvz dS, dxs dt
Ow

_ / (V) (Oyi)? da’ drs dt,
Qr

where we have used the fact that v; = 0. Hence we end up with

P

& = [ owi(Ta) (7 Veu(T)) dat 5 [ (V-9)(0)? do. (2:20)

Qp
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Next, we focus on . We observe that

52:—/ Avl('y Vvl dmdt / Agv; 'y Vvl dxdt— 8 vz ~Vvi) dz dt.
QT QT

Again applying Green’s formula in 2’ € w, we find

—/ Az/vz('y Vvl dmdt / // |0, vz\QdSm/ dxs dt
QT ow
/ //V ;- V 7 sz) dx dt,

and using integration by parts in x3 € R, we obtain

8 S Vi 'y . VUZ') dxdt = / O3 Vi0z, (7 . Vvi) dx dt.
QT QT

As a consequence, & reduces to

= —/ |0, v;|? dSyr dxs dt + Vav; - Vg (7 . Vvi) dx dt.
= Qr

Furthermore, we use the following identity for any v = (y1,72,73)" € R® and H = (85,7:)1<4, j<3,
1
Vavi - V(v Vo) = (HVy;) - Vo; + 37 V(|Vui[?).
Subsequently, & transforms into
1
—/ |0, v;|? dSyr ds dt + / (HV’UZ') Vv dxdt + = / v - V(| Vi |?) dz dt. (2.21)
s Qr 2 Ja,
Again, applying the Green’s formula in 2’ € w implies

/ v V(|VU1|2) d:l?/ = / Y1 Vx/(|Vv7|2) dxr

(2.22)
= [ avelyas, - [ (@ avup) i
Using the fact that v;|,, = 0, we have |Vo;|> = |9, v;* on . It follows from ) that
/Q - V(V0i2) dadt = /E 1Oy 0|2 dS,s das dt —/Q (V- 2) (Vs 2) da dt. (2.23)
Substituting in we get,
&y = —%/E |0, v;|? dSyr dxs dt + /QT (HVv;) - Vv, dz dt — ;/QT (V- ) (|Vvi]?) d dt. (2.24)

Combining (2.19)), (2.20) and (2.24) together, we get

/|8yvi|2d5’x/ dxgdt:Q/ (HVvi)-Vvidmdt—/ (V- (|Vvi]?) dz dt
b Q Q

T T

+2 /Q Owi(T, ) (v - Vo (T, x)) do + / (V- 7)(0pv;)? da’ das dt

Qr
+ / (’y . Vvi) Zqijvj dz dt — / (? . ?(i)) (7 . Vvi) dx dt
Qr j=1 Qr
which further implies that
- —
10,0112y < C(ICE. 0 PR+ 1 130733130 + 1712 o,z )

Since the above estimate holds for each i = 1,2,...,n, we finally end up with

10,7 ey < (I8, 6, F) HL+||7||C([OT]H @y + 1212 o120
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and consequently, the estimate (2.17) is established. Moreover, using the fact that ||5‘,,7||L2(Z) =
||51,7||L2(E), we have

10, Tl < CI(S, B Pl

Hence the result follows. O

Remark 2.3. Incorporating (2.1), we find that the input-output map A, defined in (1.4)) is continuous
from L to HY(Q) x L?(Q) x L3(%).

3. STATEMENT OF THE MAIN RESULTS
The main results of the paper are as follows:

Theorem 3.1. Let ¢ := ((qgﬁ)))lgi,jgn fork = 1,2 be two sets of matriz potentials with with qg), qg) €

WL(Qp) for all 1 < 0,5 < n and ||¢P|| < M, for k = 1,2. Let @™ be the solution of (1.1)
corresponding to the matriz potential ¢ = ¢'*) and Ay be the given 10 map defined by (L.4) corresponding
to W*) . Then, the following stability estimate holds for T > Diam(w),

2 —1
42 = a3 0y < O (I = Bl + 105 1,00 — Al ), (5.1

where p € (0,1) and the constant C = C(u,Q, M, T) > 0.

Furthermore, we can extend the result mentioned in Theorem The stable determination of matrix
potential ¢ can be derived from the measurements in a bounded subset of ¥. However, some additional
information is required on the matrix potential ¢q. More precisely, for R > 0, we introduce the space Lg
as follows:

- —
Lp={(6,%. 1) eL: ft.a'es) = 0, t€(0,T), 2’ €w, |us] > R}.
Let us also define A{(JR) the input-output map associated with the subset of lateral boundary

AP Ly — HYQ) xL*(Q) x L*(Zp)

AL (?,?,?) = (7}t:T,3t7|t:T,8V7|ZR), (3.2)

where ¥ is the solution of (1.1) and ¥ := (0,T) x Ow x (=R, R). Consequently, the stability result can
be stated as follows:

Theorem 3.2. Let ¢V, ¢® € W (Q7) be two sets of matriz potentials with ||¢®| < M, for k= 1,2.
Moreover, we assume that there exists v > 0 for which

Hq(l) — 40 _ Hq(l) — ¢ (3.3)

)HL‘X’(QT) )HLOO((O,T)XwX(—T,T))'

Let U ™®) be the solution of (1.1) corresponding to the matriz potential ¢ = q*) and A;I(?) be the given

input-output map defined by (3.2)) corresponding to U ®) . Then, the following stability estimate holds for
all R >r and T > Diam(w),

2/ R R R Ryt
o = a2 g < (1A - A2 + [1og 1AL - A1 ). (3.0

where p € (0,1) and the constant C = C(u,Q, M, T, R) > 0.

Remark 3.3. Since the IBVP (1.1)) is defined over the infinite waveguide Qg, the Theorem can not
be derived from results available for the bounded domain. However, condition holds if ¢V = ¢
for all (t,z) lies outside (0,T) x w x (—r,r). Hence due to (3.3), it will be sufficient to determine the
matriz potential in the bounded domain (0,T) X w x (—r,r).
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4. GEOMETRIC OPTICS SOLUTIONS

In this section, we give the construction of exponential growing and decaying solutions which will be
instrumental for our stability result. More precisely, following the ideas from [26] used for constructing
geometric optics (GO) solutions for a scalar wave equation in an infinite waveguide, we construct the
suitable GO solutions for the system of wave equations considered in the present article. We also remark
that the GO solutions for a system of wave equations in a bounded domain are constructed in [37].
However, the approach used in [37] can not be carried out for our case. To overcome this, we decompose
the operator [0 := 07 — A, as 07 — Ay and —92, considering © = (¢/,x3), 2’ € w,23 € R.

We prove the following Lemma in which S! := {y € R? : |y| = 1}, S(R) denotes the Schwarz space
over R and C§°(R?) denote the space all smooth functions having compact support in R2.

Lemma 4.1. Let ¢ € WH°(Qr) be a matriz-valued potential, € S, h € S(R) and ¢ € C°(R?) be
giwen. Then for any p > 0, the equation

92U (t,z) — AT (tz) +q(t, )T (tz) = O,  (tz)€ Qr, (4.1)
admits a solution of the form
WE(t, x) = TP 0t (3! tH)h(mg)ﬁ2i + E/)i(t,x ip), t€(0,7), 2" €w, x5 €R, (4.2)
where ?i € R" is any constant vector and El)i (t,z;p) satisfies
GH(0,2:p) =0, U (0,2:p) = 0
E}*(T,x;p) = 8t37(T,x;p) = ﬁ, x € Q, (4.3)
@i(t,w;p) = 6), (t,z) € X.

, x €,

Moreover, there exists a constant C > 0 depending only on w,T and ||q||w1. ) such that
— —
oll ‘I’i('sp)HLz(QT) + ||V‘I’i(';P)||L2(QT) < O”?iHR"H‘PHH3(]R2)||hHH2(R)~ (4.4)

Proof. We give the proof for the construction of @ while that of construction of @~ follows similarly.
To begin with, we first observe the following

(8152 _ Ax’) [(p(l‘l + to)h(xS)eip(z’_6+t)] — 6ip(x’.0+t) (8t2 _ Aa:/) [QO(ZC/ + ta)h(ZE:g)},
and similarly
—833 [(p(a?/ + t9)h(a:3)ei”(”,'9+t)] = eip(a-0+1) [ — 833(@(30’ + t9)h(x3))].
As a consequence, we obtain
(0 — A+ q(t,2)) [ O+ (o —|—t0)h(x3)?ﬂ _ eiP(z’_€+t)7(t’x/’x3)’
where 7(1&, 2, x3) is given by
Tt 23) = (7 — D)o’ + t0)h(za) K] +q(t,2) [p(a’ + t0)h(xs) K *]. (4.5)

Now in order to have @+ given by (4.2) is a solution to (4.1, it is enough to show the existence of E/)Jr
satisfying the following equation

2T (t,x) — ATH(t,x) +qt,2) U+ (t,2) = @D T (1! 23), (t,2) € O,

E/)+(O7l‘,p) :8t$+(07x7p) = ’ MRS Q7 (46)

TH(t,x) =0, (t,2) € 3.

From (4.5), we find that ei”(wl'e*‘t)?(t,x’,mg) € L%(Q7). Following the similar analysis carried out to

demonstrate the well-posedness of ([2.10]), we ensure the existence of ¥ € L2(0, T; H}(Q))NH (0, T; L(€2))

as a solution of (also refer to the Theorem 8.1 in [35, Chapter 3]). Moreover, eip(w"”t)?(t, x',x3) €

H'(0,T;L2(Q)) and again applying the Theorem 2.1 in [36, Chapter 5], we conclude that ¥+ € H?(Q7).
Let us define

W/(t,z)—/t Tt(s,2)ds,  (t,2) € Qr, (4.7)
0
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_>
and consequently, W satisfies

O2W(t,2) — AW (t,2) + q(t, 2)W (t,x) = B (t,2) + B2(t,2), (t,7) € O,
W(0,2) = 9,W(0,2) = 0, zeq, (4.8)
W(taz) = ﬁ’ (t,l‘) €x,

where ﬁl and ﬁ2 are given by

ﬁl(t,x) = —/t eip(m/'9+s)7(s,x’,x3) ds,
0
B2 (t,z) = /

0

lq(t, z) — q(s, x)]@>+(s, x)ds,

respectively. Let 7 € [0,T]. From the energy estimate of (4.8)), we get
H
194 (7 ) ey = 1V (7, )Ry < C(IRY + B3 0rmaqay )
< C(IR a(m + IR 20, rmmca ) (4.9)

Moreover, we have

t ) , 1 t ) ,
ﬁl(t,x) =— [ ¢rl® '9+S)7(s,x’,x3) ds = —— [ 8,e*® '9+S)7(s,x’,x3) ds
0 P Jo
t ip(z'-0+t ip(z'-0
= % eip(xl'9+5)8s7(3axl7x3) ds — ¢ a )7(t’x/7x3)ip_ € 8 )7(073;/71"3)
0

and it follows from (4.5))

)

C
1B Lo 0n) < N [l 1Bl 2@ ol o @)- (4.10)
P

Again estimate for ﬁQ can be obtained by
L=
||ﬁ2‘|%2(0,7—;L2(Q)) < C”QH%/I/LOO(QT)A |0V (s, ')||i2(9) ds. (4.11)
Hence the estimates in (4.9) reduces to
= 1 A=
103 (7, )20y < € (I o Wblracey s ey + Nl ey / 1007 (s, )l g s )-
Applying the Gronwall’s inequality, we deduce
C
1037 (7, )20y < 31K ol o ol
for almost everywhere 7 € [0, T]. Incorporating (4.7]) we have
— C
19 L2 (or) < ;||?+HR”HhHH?(R)H‘PHH?’(R2)~ (4.12)
Combining the inequality (4.12)) along with the coercivity of the bilinear form
— —— =
o7 8= [ (YT VR @) +a(t.0)F (@) (@) do
Q
associated to (4.6) and applying [31] and [35, Theorem 8.1], we deduce

_>
VT )llz20) < CIE e il mroqe 1l 2y

and hence the estimate (4.4)) is obtained. In an analogous way, the existence of W~ can be ensured and
consequently, using (4.3)), the estimate (4.4]) can be obtained. Hence the result follows. O

We make the following remark which will be required to study the stability estimate:
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Remark 4.2. Using the fact that E}i is vanishing at the boundary of €2, we have
U () I_%i( (2" +tO)h(x3)e iip(‘”/'eﬂ)) on X.
Consequently, using the Theorem 2.2 in [36, Chapter 4], we have
1%l < CoAIE = 2nllpll s ey 1l 22 (4.13)

5. STABILITY ESTIMATE
We devote this section to proving our main stability result. In order to establish the stability estimate
in Theorem we need to derive an appropriate integral identity.
Proposition 5.1. Let ¢ = ((qgf)))lgingn for k = 1,2 be two sets of matriz potentials with with
qf]l)7qf]2) e Wheo(Qp) for all 1 < i,j < n and |¢®| < M, for k = 1,2. Let @™ be the solution

of . corresponding to the matriz potential ¢ = ¢*) and Ay be the given 10 map defined by (1.4)
corresponding to k) Further, assume that A a) # Ay, then we have

/ (qt,2) TV - T de dt = _/ (Azm - Agu))(?, 0. F) - ds dt
Qr b

(5.1)
+ [ { (820 - 820) (@0 T) B =0T (X (M = AL ) (4.7, T o
where U satisfies the adjoint equation £2(2)7(t,x) =0 in Qp.
Proof. We define @ = @@ — @M and consequently, U satisfies the following IBVP:
q(2)7 = q(t 56)7(1 in Qp
(0, )= 0,0,70,)=10, nQ (5.2)
U= 0 , on X.
With the help of integration by parts, we find that
i LW (t,z) V(t,z)dtde = /Q [0, (T,z) - T (T,z) — 8,4 (0,z) - U (0,z)] dz
- / [U(T,x) - 0, (T,x) — W (0,2) - 0,V (0,2)] dw + | W (t,x) Ll U (t, ) dt do
Q Qrp
— / [0, (t,x) -V (t,x) — d - 8,7 (t,2)] dt dS,. (5.3)
by

Since o (T,z) = €@ (T,z) — *(T,z) = (A(ll@) - A(ll(l))(g,?,?), and in a similar manner, incor-

porating the other components of A, , using (5.2), the equation (5.3) provides the integral identity
(61). 0

The following result follows from the Proposition

Corollary 5.2. Let ¢® := ((qz(f)))l<u<n for k = 1,2 be two sets of matriz potentials with with
qul)7ql] € Who(Qr) for all 1 < i,5 < n and ||¢®| < M, for k = 1,2. Let ©®) be the solution
of (1.1] . corresponding to the matriz potential ¢ = ¢*) and Ay be the given 10 map defined by
corresponding to U ®) . Further, assume that Ayo) = Ay, then the following integral identity holds

/Q (q(t,xW(l)(t,x)) D (t,x) dide = 0, (5.4)

%
where U satisfies the adjoint equation £2(2)7(t,x) =0 in Qp.

To prove the Theorem [3.1] we need the following lemma in which using the GO solutions, an estimate
on the difference of matrix potentials ¢ and ¢(?) is derived.
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Lemma 5.3. Let ¢V, ¢ € Wh(Qr), with ||| < M,j = 1,2, and let matriz potential q of size

n x n be equal to ¢ — ¢ and extended by zero outside of Qp . Then, for all I_(> *) e R", § € St,
h € S(R) and ¢ € CS*(R?) we have

q(t7 2, ac;:,)R2 . ?(*)> ©* (2’ + t0)h?(x3) dt da’ das

R2
< c(p o Ay — q<1>||> o lrs o 22

for any p > 1 sufficiently large. Here the constant C' > 0 depends on Q,T, M, ? and ?(*).
Proof. With reference to the Lemma [4.1] for each j = 1,2, we can choose the GO solutions of
RTY (t,x) — AT (t,2) + ¢ (t,2) TP (t,2) = 0,  (t,2) € O,
in the following form:
DO (t, ', 5p) = K p(a’ + t0)h(w3)e? = 0+ 4 TO) (2 p), (5.6)

where \_I/>(j), j = 1,2 satisfies

El)(j)((),:c;p):5}@)@(0,35;/)):6}, x €,

E/)(j)(t,x;p) = 6), (t,x) € %.

Let us define o, = 7,(32) - 7(;). We observe that 7, satisfies the IBVP (5.2). Let (¢®)* denote the
adjoint of the matrix potential ¢(®. Furthermore, we choose GO solution ¥ of

OV (t,2) — AT (t,2) + (¢2) (L) T (tw) = 0, (t,2) € Q,
in the following form (cf. Lemma [4.1])
V(' x33p) = K (2 + tO)h(xs)e P 0T 4 3(*)(15, x;p) (5.7)
in which 3(*) satisfies
3(*)(T,x;p) = 8t@>(*)(T,x;p) = 6>, x €,
\_I}(*)(t,:c;p) = ﬁ, (t,z) € X.
Substituting the GO solutions and into the integral identity , we get

//R/ alt.a! ;) K - K )) (x' + t0)h?(x3) dt dz’ dzs

_ detda:—/ Sy — qm) 30 £ )T dt dS (5.8)
Qr >

- =
+ /Q {(Azh) A2(1)> ¢P7 a?p 8t7( ) . (A;(z) - A;(l)) ( ¢p7 wp, 7P)}d.’17,
where R, is given by
! = ! ?(*) T . / —ip(z'-0+t)
R, (t, 2", x3) = —q(t, 2", x3) ( Ut s p)e(x + th)h(xs)e
TR U (o ) + t0)h(xs)e?@ 0+ LT (4 o ) @*)(t,x',xg)).
Using the Hoélder’s inequality and the estimate (4.4)), we have
c .
Ryl dt < s (1, 1R [ IR 1l ooy Vol (5.9)
T

where the constant C' > 0 depends on w,T. Moreover, again using the Holder’s inequality and the
Minkowski’s inequality, we have

/Q{(A§<z> q(l))(¢p»1/} ) ) =TT, (A;@) —A;m)(?p,?p,?p)}dx
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- /2 (Azm q<1>) PR 7p) - dt dS

_>
< 11(A20 = 220 ) (3 & s F )12 17 (T, e
- =
+11(820) = 8420)) (85 T o Fllio) | 7 ooy
—> —
11 (A = A ) (80 B Tz 10T (T2l

< (I(Akor = AL ) (800 0 1) |\H1(m+||( 20 = 820)) (6 G F ) 3200
(8 = 820 ) o T Tley) | (17 @My + 107 @ Mgy + 17 o)

()
—> -
= (Aq<2) q<1>) @ ps ¥ p, 7p)||H1(Q)xL2(Q)xL2(2)||7p\|L2(Q)xL2(Q)xL2(z), (5.10)

Nl

where (gpa ﬁp??p) = (721)‘t=078t7§)1))t=0, 721))2) and 7,3 is given by

7= (1,071, ), 7ls).
Since we assume p > 1 and by the prescribed data (zp, ip, 7p), we deduce

- =
||( @ = (1)>(¢p7 ¢p77P)HH1(Q)><L2(Q)><L2(E)
- =
< [Age = Ag [l [( @ ps "/)pv?p)”Hl(Q)XL?(Q)XLz(E)a
< Age = Agon | (1000, e o) + 10020, ey + 10 slees) )

< Co?lAger = Mg | (Il rsce) 1l r2ey ) (5.11)
where we have used (4.13)), (5.6)and (5.7) respectively. Moreover, using (5.7) and (4.13) we get

17 o e () xr2(9)x12(m) < <||7\t:T||L2(Q) 10V =7 |[12(0) + ||7\2||L2(2))

, (5.12)
< Cp” ol ms @)1l m2 ®) -

By substituting the estimates obtained in (5.11)) and (5.12)) into (5.10), it becomes
- 7 - =
/Q{ <A3<z) - Aiu)) (B @ fp) - T(T,") — 0T (T, ") - (A;@) - A}I(l)) (6 b p, 7p)}dx
- =
- /E (Agm - A2<1))(¢p7 ¢p>7p) - dt dS (5.13)

< CplllAge — Ago | (||so||%{a<Rz)||h||%p<R)).

Combining the estimates and (| - together in , we have the required estimate ([5.5). This
completes the proof. O

Remark 5.4. To obtain the stability estimate of the matriz potential, we look to estimate ||qi;| L (ar)

1,7 =1,2,...,n. Hereby we need to choose the constant vectors ? and ?( ) appropriately. Fori,j €
{1,2,... ,n}, let us consider ?, ?( *) e R™ as follows:

K=y, K="

r=1" r=1">

where dy,. represents the Kronecker delta function for non-negative integers k and r. As a consequence,
we obtain

gk - KW = g, (5.14)
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5.1. Light-ray transform. Afterwards, we introduce the light ray transform [47] of (t,2’) — ¢;;(-, -, x3)
by fixing 23 € R. Let g € L*(R*) be arbitrary. More precisely, we define the light ray transform £ of a
function g(-,-, z3) as

Llg(-, - x3)](0,2) := / g(t, 2’ —t0, x3)dt, ' €R* S
R

Suppose that
q(t,x) == ¢V (t,x) — ¢P(t,x), (t,2) € Qr, (5.15)
and it is extended by zero outside the domain Q. Hence for i, j € {1,2,...,n}, we have
Llgis (- 23)](0,2) = / gy (t, 2 — 10, 23) dt.
R

Lemma 5.5. Let g be as in Lemma and y3 € R be fivred. Then, there exist C > 0,8 > 0,6 >
0, and po > 0 such that for all € S*, we have

1
Llas(y))(0.9)| < © (pﬁAqm Aol + pé) . aeyeR? (5.16)

for any p > po and the constant C' depends only on 2, T and M.

Proof. Let ¢ € C5°(R?) and h € C§°(R) be positive functions which are supported in the unit ball B(0,1)
and [—1,1] respectively. In addition, we consider |¢|[z2re2y) =1 and [|h||z2(r) = 1. Let us define

/

/ —
pe(a) : = 6’190(:17 ? ) 'y € R?,
o (5.17)
he(xs) : = 8_1/2h(73 5 3), r3,y3 € R.
In view of Lemma [5.3] replacing ¢ and h by ¢. and h. respectively, we have
T T
/ Gij(t,y' —t0,ys)dt| = / / / i (ty' — 10, y3) 02 (¢ ) h2 (w3)da’ dudt
0 0o JrJR?
T
<\ [ it = 1600w 02 ) s
0o JrJR?
T
+ / / / (i (t, Y —t0,y3) — qij(t, 2" — 10, 23))p2(2")h2(x3)dx’ dwsdt|.
0o JrJR?
Since ¢ € W*°([0,T] x R?), we have
|45 (£, — t0,y3) — qi; (£, 2" — 10, 23)] < C|(y',y3) — (2, 23)|.
Consequently, we obtain
r 1
| astt = t6.udt] < (0" Mg = Ay -+ ) e ooy el
0 P (5.18)

4 [ 107 00) — @'0) 20 2 ),
R JR2
It is straightforward to observe that

||§0€HH3(]R2) < 05_37 HhE”HZ(]R) < C€_2a
[ 107 0) = @)@ ) e’ d < Ce
R JR
As a result, (5.18)) reduces to

T
1
’ / i (t,y — t97y3)dt‘ <C <ﬂ4||/\q<2> Aol + p) e 104 Ce.
0
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By choosing € such a way € = , there exist constants ¢ > 0 and 8 > 0 such that

Llqi; (-, -,y;;)](@,y’)’ = ’/RQij(t7y/ — 10, ys3)dt

1
<C (p’8|Aq(z> Ao+ p‘5> , ae. y € R

Hence the result follows. O

Afterwards, we would like to define the Fourier transform acting on the component of the matrix
potential and subsequently, our goal is to find its estimate. In this regard, let us fix y3 € R. We set

E={(r¢) eRx ®\{(0,0}): || < I¢l}
and define the Fourier transform of g¢;;(-,-,y3) € L'(R?) as
ljl\][(? ) y3)](T7 g) = / / qij (ta ‘rlv y3) eiizl.geiit.‘[—dt dll?/.
rR2 JR
With this, we have the following result:

Lemma 5.6. There exist constants C' > 0, B > 0,0 > 0 and pg > 0, such that the following estimate
holds for any p > po and fized y3 € R,

—~ 1

Qij[(‘7 '7:‘/3)](7—7 g)‘ <C <pﬂ|Aq(2> - Aq<1) ” + pg) ) (Ta 5) €L, (519)
where the constant C' depends only on 0, T and M.
Proof. Let us consider (7,&) € E and ¢ € S! be such that & - ¢ = 0. We define 0 as

R =
sothat # € St and 0- & = 7.

By the change of variable 2’ = ¢/ — tf, we have for all £ € R?, § € S,

/ Llaij (-, y))(0,9) eV < dy —/ (/qu( 1, yg)dt> W gy
// qu t 1’ y3 —ia E6 ZtTdtdx

5 3)](7, )

Since w is bounded in R? and supp ¢;;(t,-,y3) C @. Hence there exists A > 0 such that
/ K[qu(, N y3)}(95 y/) e_iy < dyl = q/l;[(v K yS)](T> 6)
R2NB(0,))

Taking into account the estimate (5.16[) in Lemma we obtain the required estimate of g;;(-,-,y3). O

5.2. Stability estimate. In this section, we provide the proof of Theorem For x > 0, we denote
B(0,k) = {z € R® : |z| < k}. Our approach is similar to the one described in [I] for the scalar potential.
The following lemma will play a crucial role in our further analysis.

Lemma 5.7 ([38, [49]). Let O be a non empty open set of B(0,1), and let F be an analytic function in
B(0,2), obeying

M y|!
107l Lo (B(0,2)) < T Vv e (NU{0})3,

for some M > 0, and n > 0. Then we have

107 F|| o (B(0,1)) < (QM)l_"HmFH”oo(o)’

where p € (0,1) depends on n,n and |O)|.
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Proof of Theorem [3.1] Let us fix y3 € R and for fixed a > 0, we define

Fa[y?)](Tv 5) = q/l;[(’ ',y3)](04(7', 5))? (7—7 5) € R?.

Since we have assumed that ¢;; = 0 outside Qr, hence ¢;;(-, -, y3) € L (R x R?) for any y3 € R, therefore
using the Paley-Wiener’s theorem, we have that F,,[ys] is analytic and for v € (NU {0})3, we have that

|07 Falys] (7, ) = 107q;((-, - ys) (a7, €))]

y —ia(t.a)(76) gy
‘6 // ai; (t, 7', ys)e dz’ dt (5.20)
R L e e
R JR2

Now using the fact that T > diam(w), we see that

197 Falys)(7,€)] S/ / 4sy (6,27 ya)|a (122 + ) 3 da d

Iw\

< lasi o5 y3)l 21 o, 77 xw) all(27?) 2
< Cllgis (s y8) e 0,11 @71 (27%)F
< Cllgisll zoe Ry ;150 (0,7 xw)) (T|71|)| et < C TNy le.
Setting M = Ce®, n=T"! and O = E°N B(0, 1), where
B = {(r,6) e R x R\{(0,0)}), I7| <lel},

and subsequently, applying the Lemma we find a constant p € (0,1) such that

| Falysl (7,1 = 13510 - y3)| (7, )| < C e || Falys]llf e 0y, (7,€) € B(0, 1), (5.21)
Since aE° = {a(1,§) : (1,€) € E°} = E°, using we deduce for (7,¢) € B(0, a),

@5 (C - 92)) (1. O] = | Falysl (@™ (1,€))] < Ce*C || Fa[ys]llf o o)

< C (=) ||Qz][(’ ,y3)H|LM(B(0 )ﬂE")

< C IG5 o)l o
This gives us the following estimate
1G5, - wa)lll e B0,y < C e GGG y3)] o 0 (5.22)

Next, we observe that
551G 98] 12 sy = / U+ O G ), €) Prde
- / (141 OP) G5 )] (7, ) [P
[(T,8)|<a
+ / A+ 1 OP) T 98] (7, €) [P
[(T,8)|>a

<C (043”@[('7 Y312 (B0, + @ 115 '7y3)]”%2(R3)> :

Now using the Plancherel theorem together with the boundedness of ¢;;, we get

1/p
llgs5((, 793)]”2/” R3) < C(Oé?’”@[('v Y3 e (B0,a)) + @ llassl() '7y3)]||%°°([O,T]><w))

. , ) 1/p
< C(a 1@51Cs - y3) e (B(o,a)) + ) '
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This after using equation ((5.22)) and ( gives us
2/ 3 2a(1 2 2 e
HQZJ[(ﬂayJ)]||H£LI(R3) < C(Oé e o _“)||QZJ[(771U3)]||L/;(E0) +a )

1\ 2~ 1/p
< C(a3 p2a(l—p) (pﬁmq(z) — Ao+ p5) + a—2>

a(l—p) 3 2a0-p 1 _
<C(0¢ue Iz p2'8||Aq(2) —Aq(1>||2+owe u 55 +« 2/“),
p
where y3 € R. Let ag > 0 be sufficiently large and consider a@ > ap. We set « in such a way that
3 2a(-p) 1 _
are 5 = 2K,
As a consequence, we have
5 a(l—p)

and

2 30455 20(0+9)1=w) _
llgi; [ (-, ~,y3)]||H/51(R3) < C(OL e Ay — Ay [|* + a 2/“)7 y3 €R,

< C(eNAy — Ay |I” + 072/“), Y3 € R,
where N depends on 4, 8 and . Now for a fixed a > 0, large enough, we choose 0 < ¢ < 1 such that
0 <Ay — A <c
and

-1
VA e — Ay |2+ a7 < Ay — Ay |72 + ‘ 1og | Ay — Ay ||\
Using this in (5.23)), we get that
2
||Qij[( ) >y3)H|H 1([0,T]xw) — ||qij[('7'73/3)]||H/51(R3)

—2/u w/2
<c<||Aq(2)—Aq<1>|+)1og||Aq<2)—Aq<1>|] ) ,

-1
< C’<||Aq(2) _ Aq<1)|\“/2 + ‘ log [|A ) — Aq(1>||’ >, (5.23)
where y3 € R. Since the right hand side of (5.23) is independent of y3 € R, therefore we obtain

—1
|2/P« (”A (2) — (1)””/2 ‘IOgHA (2) — q(l)”‘ )

Lo (Ryy i H-1([0,T] xw ))
Also, if [|[Ay@ — Ay || > ¢, then we have

1gi5[C - w3)]]

gis [ - y3)lll -1 0,11 xw) < Cllaiz 155 y3)lll Los ([0, 77 xw)
2CMcH/? _ 2CM
cH/2 7 1A — A ”#/2 J
hence (5.23]) holds. Thus combining the above estimates, we get
-1
sl I o < € (T = Ay 172+ [0 [y = Ayl )

Now for s > n/2, using the Sobolev embedding theorem, we get that

i3 (-5 - y3)l Los (0,77 xw) < Cllaiz [ 5 y3)] | me (0,77 %) - (5.24)
Finally using the Sobolev interpolation theorem, we have that
||Qij[('v '7y3)]||H5([0,T]><w) < C”Qz‘j[( ) vyd)]”H 1([0,T] xw) ||QZJ[( ) 71/3)]||Ha+1([o T)xw)
< C||Qij[( , 7y3)]”H 1([0,T] xw)?
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where the parameter g € (0,1) and constant C' > 0 independent of ¢;;. Combining this with (5.24) and

using (5.23)), we obtain
-1
gijll Lo (@) < C<Aq<2> — A" + ’10g [Age — Aq(l)H’ >

Since the above estimate holds for every i,5 € {1,2,...,n}, we have demonstrated the required stability
estimate. Hence the Theorem [B.1] follows. O

5.2.1. Proof of Theorem [3.2] Hereby, we give a proof of the Theorem [3.:2} As GO solutions are one of
the main ingredients for stability estimate, we require appropriate assumptions on GO solutions 7 such
that @ ,|x, € Lr. More precisely, we will modify h € S(R) in the Lemman 5.3| for our analysis.

Lemma 5.8. Let ¢V, ¢ € Wh(Qr), with ||| < M,j = 1,2, and let matriz potential q of size

n xn be equal to ¢ — ¢ and extended by zero outside of Qp . Then, for all ? *) e R", § € St,
h e C((—R,R)) and ¢ 6 C0 (R?) we have

q(t,z', x3) K-RK® ) (2 + t0)h?(x3) dt da’ dxs

R (5.25)

R
< (5 + 1AL = AL el

for any p > 1 sufficiently large. Here the constant C > 0 depends on R,Q,T, M, ? and ?(*).
With the help of Lemma [5.8] we complete the proof of Theorem

Proof of Theorem [3.2] Let us consider the matrix potential ¢ as introduced in with taking values
zero outside of Qp. In addition, the functions ¢. and h., which were introduced in the Lemma are
taken into consideration with y3 € (—r,r). Therefore, combining Lemmawith Lemma and Lemma
we obtain the estimate

Tlemin o) <€ (PG - 2RI+ ). roer, (5.26)

where 8,6 > 0 and p > pg > 0. Afterwards, following the proof of Theorem we obtain for i,j €
{1,2,...,n},

R
lais 722 0,y o (- M))<O(A<m AL /2 4 [log ALY — ;M) (5.27)

where C' > 0 depends on R, 2, M and T'. Taking into account the assumption (3.3)), we have the estimate

B-4). 0
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